Search for everything

Saturday, May 21, 2011

Atmosphere and Magnetosphere


Atmosphere

Earth's atmosphere
All of the Solar System planets have atmospheres as their large masses mean gravity is strong enough to keep gaseous particles close to the surface. The larger gas giants are massive enough to keep large amounts of the light gases hydrogen and helium close by, while the smaller planets lose these gases into space.[119] The composition of the Earth's atmosphere is different from the other planets because the various life processes that have transpired on the planet have introduced free molecular oxygen.[120] The only solar planet without a substantial atmosphere is Mercury which had it mostly, although not entirely, blasted away by the solar wind.[121]
Planetary atmospheres are affected by the varying degrees of energy received from either the Sun or their interiors, leading to the formation of dynamic weather systems such as hurricanes, (on Earth), planet-wide dust storms (on Mars), an Earth-sized anticyclone on Jupiter (called the Great Red Spot), and holes in the atmosphere (on Neptune).[104] At least one extrasolar planet, HD 189733 b, has been claimed to possess such a weather system, similar to the Great Red Spot but twice as large.[122]
Hot Jupiters have been shown to be losing their atmospheres into space due to stellar radiation, much like the tails of comets.[123][124]These planets may have vast differences in temperature between their day and night sides which produce supersonic winds,[125] although the day and night sides of HD 189733 b appear to have very similar temperatures, indicating that that planet's atmosphere effectively redistributes the star's energy around the planet.[122]

[edit]Magnetosphere

Schematic of Earth's magnetosphere
One important characteristic of the planets is their intrinsic magnetic momentswhich in turn give rise to magnetospheres. The presence of a magnetic field indicates that the planet is still geologically alive. In other words, magnetized planets have flows of electrically conducting material in their interiors, which generate their magnetic fields. These fields significantly change the interaction of the planet and solar wind. A magnetized planet creates a cavity in the solar wind around itself called magnetosphere, which the wind cannot penetrate. The magnetosphere can be much larger than the planet itself. In contrast, non-magnetized planets have only small magnetospheres induced by interaction of theionosphere with the solar wind, which cannot effectively protect the planet.[126]
Of the eight planets in the Solar System, only Venus and Mars lack such a magnetic field.[126] In addition, the moon of Jupiter Ganymede also has one. Of the magnetized planets the magnetic field of Mercury is the weakest, and is barely able to deflect the solar wind. Ganymede's magnetic field is several times larger, and Jupiter's is the strongest in the Solar System (so strong in fact that it poses a serious health risk to future manned missions to its moons). The magnetic fields of the other giant planets are roughly similar in strength to that of Earth, but their magnetic moments are significantly larger. The magnetic fields of Uranus and Neptune are strongly tilted relative the rotational axis and displaced from the centre of the planet.[126]
In 2004, a team of astronomers in Hawaii observed an extrasolar planet around the star HD 179949, which appeared to be creating a sunspot on the surface of its parent star. The team hypothesised that the planet's magnetosphere was transferring energy onto the star's surface, increasing its already high 7,760 °C temperature by an additional 400 °C.[127]

No comments:

Post a Comment